Bayes

p-values and Type I Errors are Not the Probabilities We Need

In trying to guard against false conclusions, researchers often attempt to minimize the risk of a “false positive” conclusion. In the field of assessing the efficacy of medical and behavioral treatments for improving subjects’ outcomes, falsely concluding that a treatment is effective when it is not is an important consideration. Nowhere is this more important than in the drug and medical device regulatory environments, because a treatment thought not to work can be given a second chance as better data arrive, but a treatment judged to be effective may be approved for marketing, and if later data show that the treatment was actually not effective (or was only trivially effective) it is difficult to remove the treatment from the market if it is safe.

Null Hypothesis Significance Testing Never Worked

Much has been written about problems with our most-used statistical paradigm: frequentist null hypothesis significance testing (NHST), p-values, type I and type II errors, and confidence intervals. Rejection of straw-man null hypotheses leads researchers to believe that their theories are supported, and the unquestioning use of a threshold such as p<0.05 has resulted in hypothesis substitution, search for subgroups, and other gaming that has badly damaged science. But we seldom examine whether the original idea of NHST actually delivered on its goal of making good decisions about effects, given the data.