Reporting

Statistically Efficient Ways to Quantify Added Predictive Value of New Measurements

Researchers have used contorted, inefficient, and arbitrary analyses to demonstrated added value in biomarkers, genes, and new lab measurements. Traditional statistical measures have always been up to the task, and are more powerful and more flexible. It’s time to revisit them, and to add a few slight twists to make them more helpful.

Bayesian vs. Frequentist Statements About Treatment Efficacy

To avoid “false positives” do away with “positive”. A good poker player plays the odds by thinking to herself “The probability I can win with this hand is 0.91” and not “I’m going to win this game” when deciding the next move. State conclusions honestly, completely deferring judgments and actions to the ultimate decision makers. Just as it is better to make predictions than classifications in prognosis and diagnosis, use the word “probably” liberally, and avoid thinking “the evidence against the null hypothesis is strong, so we conclude the treatment works” which creates the opportunity of a false positive.