Implementation of the PATH Statement

The recent PATH (Predictive Approaches to Treatment effect Heterogeneity) Statement outlines principles, criteria, and key considerations for applying predictive approaches to clinical trials to provide patient-centered evidence in support of decision making. Here challenges in implementing the PATH Statement are addressed with the GUSTO-I trial as a case study.

RCT Analyses With Covariate Adjustment

This article summarizes arguments for the claim that the primary analysis of treatment effect in a RCT should be with adjustment for baseline covariates. It reiterates some findings and statements from classic papers, with illustration on the GUSTO-I trial.

Bayesian Methods to Address Clinical Development Challenges for COVID-19 Drugs and Biologics

The COVID-19 pandemic has elevated the challenge for designing and executing clinical trials with vaccines and drug/device combinations within a substantially shortened time frame. Numerous challenges in designing COVID-19 trials include lack of prior data for candidate interventions / vaccines due to the novelty of the disease, evolving standard of care and sense of urgency to speed up development programmes. We propose sequential and adaptive Bayesian trial designs to help address the challenges inherent in COVID-19 trials. In the Bayesian framework, several methodologies can be implemented to address the complexity of the primary endpoint choice. Different options could be used for the primary analysis of the WHO Severity Scale, frequently used in COVID-19 trials. We propose the longitudinal proportional odds mixed effects model using the WHO Severity Scale ordinal scale. This enables efficient utilization of all clinical information to optimize sample sizes and maximize the rate of acquiring evidence about treatment effects and harms.

Implications of Interactions in Treatment Comparisons

This article explains how the generalizability of randomized trial findings depends primarily on whether and how patient characteristics modify (interact with) the treatment effect. For an observational study this will be related to overlap in the propensity to receive treatment.

The Burden of Demonstrating HTE

Reasons are given for why heterogeneity of treatment effect must be demonstrated, not assumed. An example is presented that shows that HTE must exceed a certain level before personalizing treatment results in better decisions than using the average treatment effect for everyone.

Assessing Heterogeneity of Treatment Effect, Estimating Patient-Specific Efficacy, and Studying Variation in Odds ratios, Risk Ratios, and Risk Differences

This article shows an example formally testing for heterogeneity of treatment effect in the GUSTO-I trial, shows how to use penalized estimation to obtain patient-specific efficacy, and studies variation across patients in three measures of treatment effect.

Statistically Efficient Ways to Quantify Added Predictive Value of New Measurements

Researchers have used contorted, inefficient, and arbitrary analyses to demonstrated added value in biomarkers, genes, and new lab measurements. Traditional statistical measures have always been up to the task, and are more powerful and more flexible. It's time to revisit them, and to add a few slight twists to make them more helpful.

Viewpoints on Heterogeneity of Treatment Effect and Precision Medicine

This article provides my reflections after the PCORI/PACE Evidence and the Individual Patient meeting on 2018-05-31. The discussion includes a high-level view of heterogeneity of treatment effect in optimizing treatment for individual patients.

Musings on Multiple Endpoints in RCTs

This article discusses issues related to alpha spending, effect sizes used in power calculations, multiple endpoints in RCTs, and endpoint labeling. Changes in endpoint priority is addressed. Included in the the discussion is how Bayesian probabilities more naturally allow one to answer multiple questions without all-too-arbitrary designations of endpoints as "primary" and "secondary". And we should not quit trying to learn.

Is Medicine Mesmerized by Machine Learning?

Deep learning and other forms of machine learning are getting a lot of press in medicine. The reality doesn't match the hype, and interpretable statistical models still have a lot to offer.